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Introduction

• Managing the performance of e-commerce sites is challenging

o Site content changes frequently

o Dynamically varying workloads

o Some applications of control theory to computing systems include

 flow and congestion control, differentiated caching and web service, multimedia 
streaming, web server performance, e-mail server control

• To maintain good performance

o System administrators must tune their information technology environment

o Manual effort can be time consuming and error-prone, and requires highly 
skilled, making it costly



Introduction

• All applications provide a degree of autonomic behavior by providing 
algorithms

o to automatically control some aspect of a computing system’s operation

• In this paper…

o proposing an agent-based solution

 Automates the ongoing system tuning 

 Automatically designs an appropriate tuning mechanism for the target 
system



Apache Web server and performance tuning

• Apache v1.3.x of the server on UNIX is structured as

o One master process: monitors the health of the worker processes and manages 
their creation and destruction.

o A pool of worker processes: responsible for communicating with Web clients 
and generating responses. 

 One worker process can handle at most one connection at a time.

 Worker processes cycle through three states: idle, waiting, busy



Apache Web server and performance tuning

• The application-level tuning parameters in Apache Web server

o MaxClients: The number of simultaneous requests that will be served

o KeepAlive: Whether or not to allow persistent connections

• Administrator must operate indirectly by adjusting tuning parameters

o Increasing MaxClients: Increasing both CPU and Memory utilizations

o Decreasing keepAlive: Allows worker process to be more active.

 Directly results in higher CPU utilization

 Indirectly increases memory utilization (more clients can connect).



Results of manually tuning the Apache Web server

Suppose the desired 
CPU level = 0.5
Memory = 0.6

Y-axis: measured values
X-axis: time (second)

Result: 
MaxClients: 400
KeepAlive: 10



Effects of Dynamics Workloads

o A change of Web site contents 
also affect the CPU and memory 
usage per request and

o also require different MaxClients
and KeepAlive setting.

 Need AutoTune agents: to 
automate the adjustment of the 
MaxClients and KeepAlive values

 Both at system start-up and on 
an on going basis in response to 
changing workload



Server self-tuning with AutoTune Agents

• Solution:
o Multiple agents
 Automate the entire methodology of controller design

 Perform the on-line system control

• These agents are implemented using the ABLE (Agent Building and Learning Environment)

o Java**based toolkit

o ABLE: provides a comprehensive library of intelligent reasoning and learning components



Architecture of the AutoTune agent

• Modeling and design: performed in a 

“testing” (or nonproduction) mode

• Run-time control: active when the 

system is “live” (Production mode)



Modeling Agent

• Modeling agent: A good design for the feedback controller relies on a 

mathematical model of the target system.

• Quantifying the relationship between the tuning parameters and performance 

metrics

• 2 x 2 matrics A and B

• Include modeling parameters

• Can be identified using the least squares method



Controller Design Agent

• To design the parameters

• Choosing the controller parameters based on minimizing the following quadratic 

cost function:

• Q and R perform some scaling functions in addition to determining a trade-off between control 

error and control variability



Run-time Control Agent

• Implements a state feedback controller

o To make control decisions based on feedback of errors

o KP: Proportional control gain for fast response

o KI: Integral control gain for removing steading-state error 



Experimental Environment

• Sever machine: Linux 2.2.16, Apache HTTP server v1.3.19

• One or more client machines:

o Workload generator: WAGON (Web trAffic Generator and beNchmark)

o File access distribution: Web Stone

• Dynamic workload
o Web pages generated through CGI (Common Gateway Interface)

o The session following a Poisson distribution

o A rate of 10 sessions per second



Experimental Assessment
• Results of automatically tuning the Apache Web server



Experimental Assessment
• Performance of the AutoTune controller for the Apache Web server under 

dynamic workload



Conclusions

• Proposing an agent-based solution

o Automating the ongoing system tuning

o Automatically designing an appropriate tuning mechanism for the 

target system

• Experiments showing

o The feedback-driven controller to be robust and adaptable to 

situations other than the one for which it was designed


