
Managing Web server
performance with AutoTune
agents
by Y. Diao, J.L. Hellerstein, S. Parekh, J.P. Bigus

IBM SYSTEM JOURNAL, VOL 42, NO 1, 2003

Seoul National University
Computer Science and Engineering
DCSLAB
Sophal HONG
2016-12-08

Outline

• Introduction

• Apache web server and performance tuning

• Server self-tuning with AutoTune agents

o Modeling Agent

o Run-Time Control Agent

o Controller Design Agent

• Experimental assessment

• Conclusions

Introduction

• Managing the performance of e-commerce sites is challenging

o Site content changes frequently

o Dynamically varying workloads

o Some applications of control theory to computing systems include

 flow and congestion control, differentiated caching and web service, multimedia
streaming, web server performance, e-mail server control

• To maintain good performance

o System administrators must tune their information technology environment

o Manual effort can be time consuming and error-prone, and requires highly
skilled, making it costly

Introduction

• All applications provide a degree of autonomic behavior by providing
algorithms

o to automatically control some aspect of a computing system’s operation

• In this paper…

o proposing an agent-based solution

 Automates the ongoing system tuning

 Automatically designs an appropriate tuning mechanism for the target
system

Apache Web server and performance tuning

• Apache v1.3.x of the server on UNIX is structured as

o One master process: monitors the health of the worker processes and manages
their creation and destruction.

o A pool of worker processes: responsible for communicating with Web clients
and generating responses.

 One worker process can handle at most one connection at a time.

 Worker processes cycle through three states: idle, waiting, busy

Apache Web server and performance tuning

• The application-level tuning parameters in Apache Web server

o MaxClients: The number of simultaneous requests that will be served

o KeepAlive: Whether or not to allow persistent connections

• Administrator must operate indirectly by adjusting tuning parameters

o Increasing MaxClients: Increasing both CPU and Memory utilizations

o Decreasing keepAlive: Allows worker process to be more active.

 Directly results in higher CPU utilization

 Indirectly increases memory utilization (more clients can connect).

Results of manually tuning the Apache Web server

Suppose the desired
CPU level = 0.5
Memory = 0.6

Y-axis: measured values
X-axis: time (second)

Result:
MaxClients: 400
KeepAlive: 10

Effects of Dynamics Workloads

o A change of Web site contents
also affect the CPU and memory
usage per request and

o also require different MaxClients
and KeepAlive setting.

 Need AutoTune agents: to
automate the adjustment of the
MaxClients and KeepAlive values

 Both at system start-up and on
an on going basis in response to
changing workload

Server self-tuning with AutoTune Agents

• Solution:
o Multiple agents
 Automate the entire methodology of controller design

 Perform the on-line system control

• These agents are implemented using the ABLE (Agent Building and Learning Environment)

o Java**based toolkit

o ABLE: provides a comprehensive library of intelligent reasoning and learning components

Architecture of the AutoTune agent

• Modeling and design: performed in a

“testing” (or nonproduction) mode

• Run-time control: active when the

system is “live” (Production mode)

Modeling Agent

• Modeling agent: A good design for the feedback controller relies on a

mathematical model of the target system.

• Quantifying the relationship between the tuning parameters and performance

metrics

• 2 x 2 matrics A and B

• Include modeling parameters

• Can be identified using the least squares method

Controller Design Agent

• To design the parameters

• Choosing the controller parameters based on minimizing the following quadratic

cost function:

• Q and R perform some scaling functions in addition to determining a trade-off between control

error and control variability

Run-time Control Agent

• Implements a state feedback controller

o To make control decisions based on feedback of errors

o KP: Proportional control gain for fast response

o KI: Integral control gain for removing steading-state error

Experimental Environment

• Sever machine: Linux 2.2.16, Apache HTTP server v1.3.19

• One or more client machines:

o Workload generator: WAGON (Web trAffic Generator and beNchmark)

o File access distribution: Web Stone

• Dynamic workload
o Web pages generated through CGI (Common Gateway Interface)

o The session following a Poisson distribution

o A rate of 10 sessions per second

Experimental Assessment
• Results of automatically tuning the Apache Web server

Experimental Assessment
• Performance of the AutoTune controller for the Apache Web server under

dynamic workload

Conclusions

• Proposing an agent-based solution

o Automating the ongoing system tuning

o Automatically designing an appropriate tuning mechanism for the

target system

• Experiments showing

o The feedback-driven controller to be robust and adaptable to

situations other than the one for which it was designed

